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Appendix 

The calculations have been carried out by using the extended 
Hiickel method with the weighted H1J formula.25 The idealized 
octahedral structure of 1 assumed Os-C, C-O, and Os-H dis­
tances of 1.92, 1.14, and 1.65 A, respectively.26 The geometry 
of 5 was adapted from ref 18 and has Ir-Cp(center), Ir-P, and 
Ir-H distances of 1.85, 2.24, and 1.70 A, respectively, with Cp-
(center)-Ir-P and P-Ir-H angles of 120° and cis H-Ir-H angles 

(25) Ammeter, J. H.; Biirgi, H.-B.; Thibeault, J. C; Hoffmann, R. J. Am. 
Chem. Soc. 1978, 100, 3686. 

(26) Elian, M.; Hoffmann, R. Inorg. Chem. 1975, 14, 1058. 

Introduction 
Chemists have had a long-standing interest in the structures 

and reactivity of atomic clusters, both as in small molecules and 
as the building blocks of infinite solids.1,2 The discovery of the 
correct way to count electrons3 and the development of the isolobal 
analogy4 provided dramatic advances in our understanding of these 
systems and provoked several studies5"8 of why such schemes work. 
Today we have sets of rules which are capable of giving the 
electron counts favored for polyhedra and especially deltahedra 
of various types.9 Much of the attention in this field has centered 
around transition-metal-based polyhedral molecules, and the recent 
topological electron-counting schemes of Mingos5b'c and Teo7 are 
largely concerned with molecules containing elements from this 
part of the periodic table. We will see, however, that these rules 
do not work in general when applied to fused boron or gallium 
deltahedra, the topic of this paper. 

In extended solid-state arrays the clusters will be joined together 
to build up the structure. 1-4 show some one-dimensional ex­
amples of the different ways in which the solid may be assembled. 
1 contains linked polyhedra but in 2-4 the polyhedra are fused 
together. In the latter, although the octahedron is clearly visible, 

f Permanent address: Department of Chemistry and The James Franck 
Institute, The University of Chicago, Chicago, IL 60637. 

' Permanent address: Laboratoire de Chimie Theorique, Universite de Paris 
Sud, 91405 Orsay, France. 

of 60° with all three hydrides lying in a plane perpendicular to 
the Cp(center)-Ir-P plane. All the organic molecules and ligands 
have standard bond lengths and angles.27 The parameters for 
Os and Ir are given in Table IV. 

Note Added in Proof. In order to verify that the difference in 
C-H and M-H distances were not influencing the difference 
between organic and inorganic hydrides we have carried out 
calculations on SiH4 and SiH5

+ (Si-H = 1.40 A). The results 
are very similar to the CH4 and CH5

+ cases, respectively. 

(27) Pople, J. A.; Beveridge, D. L. Approximate Molecular Orbital The­
ory; McGraw-Hill: New York, 1970; p i l l . 

the repeating unit of the structure is a smaller fragment: B3, B4, 
and B5 for face, edge and vertex sharing, respectively. In two and 
three dimensions these building blocks may be linked or fused in 
turn to give an enormous variety of structures. The majority of 
the known examples contain frameworks made up of main-group 
atoms. That of CaB6

10 contains B6 vertex-linked octahedra (5) 
and that of KGa3," Ga8 dodecahedra (6) linked via gallium atom 

(1) Simon, A. Angew. Chem., Int. Ed. Engl. 1981, 20, 1. 
(2) Wells, A. F. Structural Inorganic Chemistry; Clarendon Press: Ox­

ford, 1984. 
(3) (a) Wade, K. Chem. Commun. 1971, 792. (b) Wade, K. Adv. Inorg. 

Chem. Radiochem. 1976, 21, 711. 
(4) Hoffmann, R. Angew. Chem., Int. Ed. Engl. 1982, 21, 711. 
(5) (a) Mingos, D. M. P. Nature {Phys. Sci.) 1972, 236, 99. (b) Mingos, 

D. M. P. Ace. Chem. Res. 1984, 17, 311. (c) Mingos, D. M. P.; Johnston, 
R. L. Struct. Bonding 1987, 68, 31. 

(6) (a) Stone, A. J. MoI. Phys. 1980, 41, 1339. (b) Stone, A. J. Inorg. 
Chem. 1982, 21, 2297. (c) Stone, A. J.; Wales, D. J. MoI. Phys. 1987, 61, 
747. 

(7) (a) Teo, B. K. Inorg. Chem. 1984, 23, 1251, 1257. (b) Teo, B. K. 
Inorg. Chem. 1985, 24, 4209. 

(8) Burdett, J. K. Molecular Shapes; Wiley: New York, 1980. 
(9) The rules are not completely successful. See, for example: (a) Cave, 

R. J.; Davidson, E. R.; Sautet, P.; Canadell, E.; Eisenstein, O. J. Am. Chem. 
Soc. 1989, / / / , 8105. (b) Whitmire, K. H.; Ryan, R. R.; Wasserman, H. J.; 
Albright, T. A.; Kang, S.-K. J. Am. Chem. Soc. 1986, 108, 6831. 

(10) See ref 2, p 1056. 
(11) Belin, C; Ling, R. G. C R. Acad. Sci. Ser. B 1982, 294, 1083. 
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spacers. MgB4
12 contains chains of edge-fused nido pentagonal 

bipyramids (7) in turn vertex-linked to each other. 

Burdett and Canadell 

~QS::MQ° 

Some of the materials adopt structures of considerable com­
plexity, especially those examined by Belin and co-workers. In 
Rb06Na6,25Ga2002

n there are face-fused icosahedral dimers, 8, 
of stoichiometry Ga2] which are vertex-linked to other such units 
as well as to single Ga12 icosahedra. Such a fragment is also found 
in the structure of tetragonal (or /3) boron. In Rb06N35,25Ga2002 

and in other structures, such as that OfAlB12, which contain such 
units, not all of the sites have an occupancy of 100%. This means 
that these fused polyhedra are of the nido, arachno, or even hypho 
types. Triply fused icosahedra are also known, examples being 
found in K4Na13Ga4957

14 and in the /3-rhombohedral structure of 
boron. We shall reserve treatment of these systems for elsewhere. 

In this paper we are interested in examining the electron-
counting rules for joining main-group deltahedra together, with 
special attention to the geometrical and electronic restrictions of 
the solid state. As we have pointed out above, the extension of 
the existing counting rules to such systems containing main-group 
atoms is not straightforward. Belin et al.13"15 and Schafer16 have 
studied such systems by using Wade's rules and have estimated 

(12) Naslain, R.; Guette, A.; Barret, M. J. Solid State Chem. 1973, 8, 68. 
(13) Charbonnel, M.; Belin, C. J. Solid State Chem. 1987, 67, 210. 
(14) Belin, C; Charbonnel, M. J. Solid State Chem. 1986, 64, 57. 
(15) Belin, C ; Ling, R. G. J. Solid State Chem. 1983, 48, 40. 
(16) Schafer, H. J. Solid State Chem. 1985, 57, 97. 

8 9 

the number of electrons needed. We will show below that the 
counting rules for deltahedral fusion or linkage often depend upon 
the size of the polyhedron itself, results at variance with those for 
clusters based on transition metals. We will also be interested 
in exploring the reasons behind the very different structural 
chemistry found for molecules and solids containing these elements. 
Thus, while nido octahedra are common in the molecular chemistry 
of the boranes, no examples of vertex-linked nido octahedra, 
pentagonal bipyramids, or dodecahedra, for example, are found 
in solids. 

Vertex-Linked Deltahedra. We begin by examining the elec­
tronic structure of materials containing deltahedra which are linked 
either to other deltahedra directly or via isolated atoms, dimers, 
or trimers. Examples of each type include CaB6

10 (5), KGa3," 
YB4,

17 and "B 4 C (B13C2),
18 respectively. The rules for electron 

counting here are just those derived for molecular clusters. We 
may regard each exo deltahedral bond as a two-center two-electron 
one but consider the bonding within each cluster as multicentered. 
9 shows the structure of one isomer of B10H)6, really two B5H9 

units joined by removal of H2. The solid-state examples of CaB6 

and B13C2 are classic ones treated in this way by Longuet-Higgins 
and Roberts in the fifties.19,20 Of interest, however, is how the 
band structure of the polymeric units may be built up from the 
orbitals of the deltahedral parent. For those systems without any 
units separating the polyhedra to be joined, there are strong 
geometrical restrictions on the generation of three-dimensional 
solids. Clearly as in CaB6 (5) the octahedron is a legitimate unit, 
but it is not possible for example to link icosahedra or tricapped 
trigonal prisms together to produce a three-dimensional solid solely 
by single atomic contacts between them. One-dimensional chains 
are possible for any deltahedron. The MB12 structure consisting 
of linked cuboctahedra21 is the only other known structure con­
structed by using the building algorithm shown in 5 for CaB6. We 
shall see via the energy band structure of the crystalline solid how 
the counting rules result for structures of this type. We note that 
Longuet-Higgins and Roberts performed a (rather simple) 
tight-binding calculation on CaB6 many years ago.19 

Let us first consider the one-dimensional system built from 
vertex-linked octahedra B6H4 (1). It can be considered as a 
fragment of the CaB6 structure where the missing links have been 
"saturated" with hydrogens. The band structure is reported in 
Figure 1 along with the energy levels of the "unit cell" B6H4. The 
lowest band (la^/energy level (Ia1) of these systems is not shown 
in Figure 1. There is a band gap of 3.9 eV for an occupation of 
12 bands, which corresponds to B6H4

2". This is exactly the same 
electron count corresponding to the isolated octahedral cluster 
(i.e., B6H6

2"). In other words, the fact that the cluster has been 

(17) Zalkin, A.; Templeton, D. H. Acta Crystallogr. 1953, 6, 269. 
(18) Seeref 2, p 1050. 
(19) Longuet-Higgins, H. C; Roberts, M. de V. Proc. Roy. Soc. {London) 

1954, A224, 336. 
(20) Longuet-Higgins, H. C; Roberts, M. de V. Proc. Roy. Soc. (London) 

1955, A22S, 110. 
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( a ) (b ) 
Figure 1. Band structure for a B6H4 chain (a) and energy levels for a 
B6H4 unit (b). The lowest band (la,) in (a) and energy level (Ia1) in 
(b) have been omitted. Thick and thin lines in the band structure rep­
resent doubly degenerate and nondegenerate bands, respectively. 

embedded in an infinite structures does not change the relationship 
between stability and electron count. 

How this comes about is easy to see by looking in some detail 
at the results of Figure 1. The levels there have been labeled 
according to the C44, symmetry group which is the appropriate one 
for the one-dimensional system. Labeling in Dih is also included 
for the discrete unit B6H4. Except for the 3a,g and 2a2u levels, 
all the unit cell levels can be easily related to the different bands 
of the chain. Some of them, like 3eu or 1 eg, acquire a non-neg­
ligible dispersion (2-4 eV). 3a !g and 2a2g, i.e., the two lone pair 
orbitals of the B6H4 unit, are both of a{ symmetry in the C40 group. 
Repetition in-phase (k = 0) or out-of-phase (k = ir/a) of the 3alg 

orbital gives crystalline orbitals (10 and 11) which are essentially 
bonding and antibonding across the links. As shown in 12 and 
13, just the opposite is found in the case of the 2a2ll unit cell orbital. 
Since both orbitals are strongly concentrated in the vertex-linked 
sites, the intended crossing is strongly avoided, and only one of 
the bands (4a,) stays within the bunch of bonding and nonbonding 
levels. The fact that this band shows some dispersion is due to 
the change in the nature of the intraunit cell interactions along 
the chain direction which are nonbonding at k = 0 (10) but 
antibonding at k = ir/a (13). In consequence, this band describes 
the series of slightly interacting two-center two-electron inter-
octahedral bonds. 

Although in this particular case the top of the 4a, band lies 
at almost the same energy as the top of the 3e one, the crucial 
fact leading to the existence of a band gap is that the x-type 
interactions along the chain, which are responsible for the dis­
persion of the frontier e bands, are not strong enough to close the 
gap between the two groups of orbitals descending from the t2g 

and t2u frontier orbitals of the octahedron (i.e., the leg and 3eu 

levels of the B6H4 fragment). The main reason for this is that 
the two pairs of frontier e levels describe respectively bonding/ 
antibonding interactions along one of the squares of the octahedra 
(i.e., implicate four B-B contacts per unit cell), whereas the 
inter-unit cell ^-interactions implicate only one B-B contact per 
unit cell. The effect of the last interaction is thus small relative 
to the first one which determines the initial separation. In con­
clusion, the bonding in the B6H4 chain can be described as a 
combination of classical two-center two-electron interoctahedral 
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localized bonding and nonclassical intraoctahedral delocalized 
electron-deficient bonding. 

The same analysis can be applied to any vertex-linking (one-, 
two-, or three-dimensional) of main-group deltahedra (closo, nido). 
It also applies to other nondeltahedral polyhedra which can 
generate infinite systems by using this building algorithm, as is 
the case for the three-dimensional framework of vertex-linked 
cuboctahedra of the MB!2 structure. In all these cases, the ap­
propriate electron count for high stability can be found by simply 
adding as many electron pairs as interpolyhedral bonds per unit 
cell to the number of electrons appropriate for the skeletal bonding 
of the polyhedron. 

As follows from the previous analysis, the effect on the frontier 
e bands of the delocalization through the ir-interactions will be 
larger when the number of linking directions increases. In other 
words, for a given polyhedral unit cell, we should expect a decrease 
of the energy gap when the dimensionality of the infinite system 
increases. This is in agreement with the results of Figure 2 where 
we have collected the energy gap and overlap populations for some 
of the vertex-linked systems we have considered. Another corollary 
of the previous discussion is that there should always be two types 
of M-M links broadly differing in the bond strength, i.e., the 
interpolyhedral (electron precise) bonds should be noticeably 
stronger than the intrapolyhedral (electron-deficient) ones. This 
is again in agreement with the results of Figure 2, which reports 
results for systems built with identical inter- and intrapolyhedral 
bond distances. It is also in excellent agreement with the ex­
perimental structures for these types of systems. For instance, 
the inter-/intrapolyhedral distances in CaB6 and YB,2 are 
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1.667/1.752 A and 1.684/1.809 A, respectively.22 

A parameter we will find useful later is N, the number of 
electrons per boron or gallium atom required by the electronic 
structure of a particular geometrical arrangement. We use the 
parameter Nf to measure the number of electrons per boron or 
gallium atom in a given fragment of the structure. We will use 
another parameter, JVF, to indicate the number of electrons per 
boron or gallium atom required by the observed stoichiometric 
formula of the compound. If a given solid is made up of one type 
of fragment only then clearly JVF = ./Vf. CaB6 is an example of 
this type. With vertex-linked closo octahedra N-Nf= 20/6 = 
3.33. For nido octahedra linked in the same manner to give the 
three-dimensional structure (14) N = Nf= \9/5 = 3.80. This 
structure is unknown. We will show below why it is an unlikely 
choice for an MIVB5 material, even though this electron count 
perfectly satisfies the electron-counting rules for this geometry. 

Table I shows a selection of examples with vertex-linked del-
tahedra and the electron-counting procedure. Each four-coordinate 
spacer requires four electrons and each three-coordinate spacer 
three electrons for bonding. The dimer in the MB4 structure 
contains a B=B double bond and so requires eight electrons to 
satisfy its bonding requirements. Figure 3 shows a total and partial 
density of states for this system which nicely shows the ir-bond. 
The CBC trimer in "B4C" presents some counting problems, but 
Longuet-Higgins and Roberts assigned 10 electrons to it.20 This 
material has variable stoichiometry, and the electron count is 
analogously variable around 47 electrons per formula unit. 

The electron counting is not always perfect. Sometimes this 
is a result associated with the experimental difficulties in the exact 
determination of the stoichiometry. In the system initially 
identified as "Li3Ga14", for example,24 there are icosahedra linked 
by isolated atoms arranged so as to require 138 electrons per cell. 
Only 135 are present. In a more recent structural determination 
by the original authors25 the system has been reassigned as Li2Ga7 
(Li4GaI4) which fits the counting rules perfectly (Table I). 
Another example, but one where the structure and stoichiometry 
appear correct, is the CaB6 structure observed for KB6. Here the 

(21) La Placa, S.; Binder, I.; Post, B. J. lnorg. Nucl. Chem. 1961, IS, 113. 
(22) (a) See: Hoard, J. L.; Hughes, R. E. In The Chemistry of Boron and 

Its Compounds; Muetterties, E., Ed.; Wiley: New York, 1967; p 25. (b) 
Although strictly speaking the YB12 structure contains one electron more than 
needed, this does not affect the discussion because the extra electron goes into 
a mainly localized metal d orbital. A similar comment is true of LaB6. 

(23) (a) Mair, G. Thesis, University of Stuttgart, 1984. (b) Mair, G.; 
Nesper, R.; von Schnering, H. G. J. Solid State Chem. 1988, 75, 30. 

(24) (a) Belin, C; Ling, R. G. J. Solid State Chem. 1982, 45, 290. (b) 
Stohr, J.; Schafer, H. Rev. Chim. Min. 1982, 19, 122. 

(25) Tillard-Charbonnel, M.; Belin, C. C. R. Acad. Sci. Ser. B 1988, 306, 
1161. 
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Figure 2. Overlap populations and band gaps for some vertex-linked 
polyhedral infinite systems. Calculations were actually done by using 
boron as the main-group atom and identical inter- and intrapolyhedral 
distances. 
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Table I. Electron Counting for Vertex-Linked Deltahedra 

formula 

CaB6, LiB3 

KGa3 

M11B4 

B4C 
Li2Ga7 

Li3B14 

K3Gan 

Mg2B14 

Mgo.5AlB14 

Na22Ga39 

structural formula" 

Ca(B6), Li2(B6) 
K3(Ga8)(Ga) 

M"2(B6)(B2) 
(B12)(CBC) 
Li12(Ga1J)3(Ga)6 

Li24(B8)4(B10)g 

K24(Ga12J4(Ga1 ,J4Ga12 

Mg2(B12)(B)2 

Na88(Ga12)8(Ga»15)4 

skeletal electrons 

14 
18 

14 
26 
78 

(4 X 18) + 
(8 X 22) 
(4 X 26) + 
(4 X 24) 
26 

(8 X 26) 

electronic requirements 

exo bonds 

6 
8 

6 
12 
36 

( 4 X 8 ) + 
(8 X 10) 
(4 X 12) + 
(4 X 11) 
12 

(8 X 12) + 

spacer 

none (0) 
4-coord 
atom (4) 
dimer (8) 
trimer (10) 
4-coord 
atom (24) 
none (0) 

3,4-coord 
atoms (44) 
4-coord 
atoms (8) 
15 (4 X 46) 

total 

20 
30 

28 
48 

138 
360 

336 

46 

552 

total from 
formula 

20 
30 

28 
47 

138 
360 

336 

46 

556 

ref 

22a, 23a 
11 

22a 
22a 

24,25 
23b 

26 

27 

28 
(4 X 13) + 

Na7Ga13 Na126(Ga12J12(Ga^5J6 (12X26) 216+ (6X44) ' ' 828 828 29 

3£ 
"All of the formulas are written here to emphasize the nature of the deltahedra present. The vertex deltahedra represented in the table are 8, 10, 

11, 12, and 15. *The spacer is 15. 'Lone pair electrons. Not all of the atoms of the icosahedra are outwardly coordinated. ''The spacer is the Ga15 

cluster 15 where the Ga22 and Ga23 atoms do not form a double bond but are outwardly coordinated. 

electron count is short by one electron per formula unit. A third 
example concerns materials with the Mg2B14 structure. Although 
the parent species fits the scheme well, species are known with 
the same structure but with a stoichiometry Na^B0.84B14 (1 > x 
> 0.72) which do not fit the scheme well. In this series the first 
boron sits in an interstitial site, and the structure seems to remain 
unchanged as sodium is removed from the material.27 

An interesting rather complex "spacer" (15) is found in the 
structure of Na22Ga39.

28 Eight vertex-linked icosahedra and four 
such 15 atom spacers are found per unit cell. Not all of the 
icosahedra are 12-coordinate to their neighbors, so when counting 
electrons we have to take into account the "lone pairs" present 
at these uncoordinated sites. Atoms 22 and 2330 are three-co­
ordinate in Na22Ga39 but are outwardly coordinated to other 
gallium atoms in the closely related phase Na7Gan (Na2IGa39).

29 

The structue of this spacer unit is interesting. Schaffer16 assigned 
44 skeletal electrons to it; 21 two-center two-electron bonds and 
one closed three-center two-electron bond at the very top. The 
gallium-gallium linkage 22-23 is "normal" in Na21Ga39 (2.54 A), 
but in Na22Ga39 it is however quite short (2.43 A) compared to 
typical Ga-Ga distances associated with two-center two-electron 
bonds. A molecular orbital calculation shows it to be Ga=Ga, 
the first example of a homoatomic double bond with this element 
as far as we are aware. Belin and Ling15 assigned 43 electrons 
to the skeletal bonding and considered each of the two atoms 22 
and 23 as bearing a lone pair. King31 considered the 22-23 linkage 
as a double bond and assigned 47 electrons (including the double 
bond) to the skeletal bonding. Although the last two counting 
schemes lead to the same number of total electrons for the spacer, 
the basis for these assignments does not seem to be quite firm. 
In addition, they disagree with Schafer's counting. In view of this 
situation we decided to carry out a molecular orbital study of 15. 

Some of the distances in the triangles of 15 are quite long, and 
this can lead to some problems in the electron counting. In 
consequence, we performed calculations on the three different 
triangular clusters present in 15, where hydrogens were used to 
"saturate" the appropriate atoms. According to our calculations 
both the (15-22-15) and (14-13-9) clusters, require three skeletal 
electron pairs. In addition, the first one has a very low-lying empty 

(26) Belin, C. Acta Crystallogr. 1980, B36, 1339. 
(27) Naslain, R.; Guette, A.; Hagenmuller, P. J. Less-Common Met. 1976, 

47, 1. 
(28) Ling, R. G.; Belin, C. Acta Crystallogr. 1982, B38, 1101. 
(29) Frank-Cordier, U.; Cordier, G.; Schafer, H. Z. Naturforsch. B: 

Anorg. Chem. Org. Chem. 1982, 37, 119. 
(30) In 15 and the following discussion, the original numbering used in the 

X-ray structure determination2' is used. 
(31) King, R. B. lnorg. Chem. 1989, 28, 2796. 

orbital centered at Ga22- The cluster 16 requires seven skeletal 
electron pairs. Six of them are associated with the six external 
bonds. An extra pair goes into an orbital higher in energy which 
represents a three-center two-electron bond associated with the 
inner triangle. There is also a low-lying empty orbital centered 
at Ga23. Since the intertriangular bonds seem to be normal, the 
previous results suggest a total of 22 c skeletal pairs for 15. It 
is also obvious from the present results that the two low-lying 
orbitals centered on gallium atoms 22 and 23 will interact to 
produce a bonding and an antibonding combination, hence leading 
to the creation of a Ga=Ga double bond and increasing by one 
the number of skeletal electron pairs. This analysis is confirmed 
by a calculation on the cluster 15 (again with appropriately added 
hydrogen atoms), which shows an energy gap for 46 skeletal 
electrons. The HOMO and LUMO of the system are the typical 
TT and w* type orbitals associated with the Ga22-Ga23 link. 

16 

MQ 
' 1 J \ \ 

\/~— x? 

tr ' r 

° B-H 
• B 

0 B-H 
• Ga 

17 18 

Thus the present analysis suggests that 44 and 46 are the 
appropriate number of skeletal electrons to be associated with the 
Ga15 clusters of Na7Ga13 and Na22Ga39, respectively. This is in 
complete agreement with the Schafer16 viewpoint but disagrees 
with the Belin15 and King31 assignments. However, whereas the 
total number of electrons derived from the stoichiometry and the 
theoretical analysis (see Table I) match perfectly in the case of 
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Figure 4. Schematic interaction diagram for vertex sharing of two closo 
fragments. 

Na7Ga13, this is not the case for Na22Ga39. There are 556 electrons 
per unit cell, but the calculated number required is only 552. We 
note however some problems in the refinement of the Na2JGa39 
structure associated with the sodium atoms.28 We suspect, as was 
the case for Li3Gau, that the stoichiometric formula OfNa22Ga39 
may be incorrect. According to our electron-counting scheme, 
this phase should be formulated as Na21Ga39 (i.e., Na7Ga13). 
Indeed Schafer et al.32 found a second Na7Ga13 phase (Na7Ga13-II) 
which is practically identical with Na22Ga39 except for the sodium 
content. 

In several systems the deltahedra are linked by three-center 
two-electron bonds in addition to the two-center two-electron ones 
described above. Longuet-Higgins and Roberts20 described the 
a-rhombohedral boron structure in these terms, and Belin and 
Ling15 interpreted the electronic structure of RbGa7 in this way 
by noting the proximity of two extra-deltahedral atoms to some 
of the atoms forming the icosahedra in the structure. Here there 
are also isolated four-coordinate atoms in the structure. 

Vertex-Fused Systems. These are not very common in either 
molecular main-group systems or in extended solids. 17 shows 
the structure of MgCp2 which may be regarded as two vertex-fused 
nido pentagonal bipyramids.33 CpIn can be considered an example 
of an infinite one-dimensional system.34 In solids there are 
sometimes examples of defect deltahedra linked by an electro­
positive atom. Li5Ga9, for example, contains two nido icosahedra 
joined by a lithium atom.25'35 The rules for electron counting 
here are simply derived from the condensation of two nido units 
around a single atom (Figure 4). Whatever the actual geometry 
of the condensed cluster (eclipsed or staggered nido units, het-
eroatoms present or not in the nido fragments, etc.) the four s 
and p orbitals of the shared main group atom always find a match 
with some of the S+ or S_ skeletal orbitals. As a result, the filled 
orbitals of each nido unit interact with the four valence orbitals 
of the fusing atom to give the same electron count as the sum of 
the two parents. In this way their behavior is similar to that of 
an interstitial atom in a cluster. 

There are, however, some subtleties associated with this process 
as we now show. Figure 5 reports the calculated energy levels 
for some apical vertex-shared octahedral systems. The number 
of skeletal electron pairs (SEP) have been assigned by counting 
the number of electrons needed to fill all bonding and nonbonding 

(32) Frank-Cordier, U.; Cordier, G.; Schafer, H. Z. Naturforsch. B: 
Anorg. Chem. Org. Chem. 1982, 37, 127. 

(33) Eisenstein, 0.; Canadell, E.; Thanh, B. T. Nouv. J. Chim. 1986,10, 
421. 

(34) (A) Frasson, E.; Menegus, F.; Panattoni, C. Nature (London) 1963, 
199, 1087. (b) Canadell, E.; Eisenstein, 0.; Rubio, J. Organometallics 1984, 
3, 759. 

(35) Belin, C. Rev. Chim. Min. 1984, 21, 263. 
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Figure 5. Energy levels for several apical vertex-sharing octahedral 
systems. Also included are the energy levels for a single octahedron as 
well as the energy of a boron 2p orbital. Thick and thin lines in the band 
structure represent doubly degenerate and nondegenerate bands, re­
spectively. 

orbitals taking the energy of a 2p orbital on boron as the reference. 
Although 14 SEP are needed for 18b, only 12 SEP are needed 
for 18a. In other words, the rule illustrated in Figure 4 seems 
to work for 18b but not for 18a. The reason is simple. Implicit 
in Figure 4 is the fact that the direct interaction between the two 
nido fragments is small. This is certainly the case when the shared 
atom is larger than the atoms in the nido fragments. However 
when the shared atom is of the same nature as those in the basis 
of the nido fragments, the nido-nido interactions are not negligible, 
and some orbitals can interact strong enough to eject some of the 
S_ orbitals to the antibonding energy region. Conversely some 
empty levels of the parent fragments can be lowered to the non-
bonding region. All these complications are illustrated in Figure 
5. Twelve SEP are required for the dimer (18a) because two levels 
which are filled in the nido fragment have been raised above the 
nonbonding limit. Thus it could be tempting to generalize this 
result and consider that for this type of vertex-shared octahedral 
homoatomic clusters the number of SEP needed should be (Im 

- 2(m - I)), where m = 2 for the dimer, 3 for the trimer, etc. 
However, this is not the case, because according to our calculations 
the only energy gap (2.3 eV) for the trimer corresponds to 19 SEP. 
As is obvious from Figure 5, the origin of this new algorithm for 
the SEP counting is that a pair of degenerate orbitals, descending 
from the empty orbitals of the parent fragment, reaches the 
nonbonding zone. Thus the SEP formula becomes (Im - 2(m 
- I)) + 2. The two sets of highest occupied levels cross from the 
trimer to the tetramer, but the number of SEP is 24, just that 
predicted by the last formula. However, we note that the 
HOMO-LUMO gap is decreasing (1.3 eV). Another degenerate 
pair is coming down in energy, whereas the highest occupied 
nondegenerate level is going up in energy. In fact what we are 
describing is nothing more than the building of the bottom and 
top parts of the dispersive degenerate and nondegenerate bands 
of the infinite system (see Figure 5). These two bands strongly 
overlap in the polymer, a fact which should not confer a high 
stability to this system. 

The number of levels which can be ejected out of or pushed 
into the bonding/nonbonding region can depend quite subtly on 
the nature of the actual energy levels in the fragments themselves. 
For instance, for the apical vertex-shared dimer built from two 
square pyramids, two electron pairs should be subtracted from 
the sum of the SEP of the two arachno fragments but three for 
apical vertex sharing of two pentagonal pyramids. In addition 
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Figure 6. Energy levels for the dimer, trimer, and polymer built from 
edge fusing of pentagonal pyramids. Also included are the energy levels 
for a pentagonal pyramid and the energy of a boron 2p orbital. 

to the number of vertices, heteroatom substitution of selected atoms 
or changes in the pyramidalization of some centers can also lead 
to changes in the SEP. It is not our purpose to consider this 
interesting problem in detail here but only to point out some of 
the results suggested by our calculations. First, it is clear that 
a single formula is inappropriate for these main-group homoatomic 
vertex-shared clusters. In particular, the formulas derived by Teo7 

and Mingos3 are not applicable to these cases. Second, if the 
vertex-shared atoms are larger than the unshared ones, the ap­
propriate number of SEP is simply the sum of those of the parent 
fragments. Recent examples of this class of compounds have been 
reported by Hawthorne36,37 and Cowley.38 Third, our calculations 
suggest that main-group homoatomic vertex-shared infinite sys­
tems should not be especially stable. Although there can be other 
factors at play, this is undoubtedly one of the reasons why these 
systems have not been observed. Fourth, the variety of factors 
which can influence the appearance of an energy gap suggest that 
some interesting molecular chemistry is yet to be done in this area. 

Edge-Fused Systems. Edge-fused species occur in both mo­
lecular chemistry (e.g., 1939) and in extended arrays. The structure 
of MgB4 consists of one-dimensional chains of edge-sharing nido 
pentagonal bipyramids (7) vertex-linked into a three-dimensional 
structure.12 The structure shown in 20 can be regarded as a 
two-dimensional sheet made up of nido octahedra. PbO has a 
structure similar to this, but here the pyramids are flattened so 
that there are long distances between the basal atoms of the 
pyramid. Again with long interbasal linkages it is found for BaAl4. 
Both of these structures have been studied theoretically.40,41 

However, because of the elongation of the basal linkages these 

(36) Schubert, D. H.; Rees, W. S.; Jr.; Knobler, C. B.: Hawthorne, M. F. 
Pure Appl. Chem. 1987, 59, 869. 

(37) Bandman, M. A.; Knobler, C. B.; Hawthorne, M. F. Inorg. Chem. 
1988, 27, 2400. 

(38) Siriwardane, U.; Islam, M. S.; West, T. A.; Hosmane, N. S.; Maguire, 
J. A.; Cowley, A. H. J. Am. Chem. Soc. 1987, 109, 4600. 

(39) Simpson, P. G.; Folting, K.; Dobrott, R. D.; Lipscomb, W. N. J. 
Chem. Phys. 1963, 39, 2339. 

(40) (a) Burden, J. K.; Lin, J.-H. Acta Crystallogr. 1981, B37, 2123. (b) 
Trinquier, G.; Hoffmann, R. J. Phys. Chem. 1984, 88, 6696. (c) Burdett, J. 
K.; Miller, G. J. Chem. Mat. 1990, 2, 12. 

(41) Zheng, C; Hoffmann, R. Z. Naturforsch. 1986, 41B, 292. 

systems should not be considered as condensed deltahedra. In 
fact the only extended system built from edge-shared deltahedra 
of which we are aware is MgB4. 

21 
Our results for several edge-shared pentagonal pyramid systems 

are shown in Figure 6. In these and the following calculations 
the apical atoms were set alternatively up and down the basal 
planes as shown in 7. The number of appropriate SEP is simply 
given by the formula %m - 2(w - 1) where m is the number of 
pentagonal pyramids in the structure. A very sizable gap is found 
all along the condensation process including the polymer (2.7 eV). 
It is then quite clear that these systems should be quite stable. 
In the MgB4 structure12 the chains 7 are vertex-linked to other 
chains through the two unshared atoms so that a total of 14 
electrons per formula unit are needed according to our calculations 
(12 for intradeltahedral bonding and two for two-center two-
electron extradeltahedral bonding). This is exactly the number 
derived from the chemical formula. 

Since there is both theoretical and experimental support for 
this counting, it is interesting to compare our results with those 
of the topological electron counting rules developed by Teo.7 These 
rules give equations for the total number of electron pairs P 
associated with structures in terms of the number of faces F, 
vertices V, and a constant X, dependent upon the mode of fusion 
or linking. For main group systems The parameter X has to 

P =W-F + 2 + X 

be determined separately by using a set of rules developed by Teo. 
The value for any pyramidal system is 0. Once the value for X 
has been determined for a polyhedron, edge fusion results in an 
increase equal to the number of shared edges with respect to the 
sum of the values associated with the separate polyhedra. Thus 
for the pentagonal pyramid \V, F, X\ = |6, 6, OJ and P = 14. Of 
these there are clearly six outward pointing bonds and thus V + 
2 = 8 skeletal electron pairs. However, for the edge-sharing of 
two pentagonal pyramids JlO, 12, 1 j the total electron count is 
21 pairs compared to the 22 pairs calculated here. As was the 
case for vertex-shared clusters, the rules do not work for main-
group systems. 
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The number of SEP to be substracted from the sum of the SEP 
of the parent deltahedra changes with the nature of the polyhedron. 
For instance when we repeated the calculations of Figure 6 by 
using square pyramids, the number of SEP found were 7,10, and 
13 for the monomer, dimer, and trimer, respectively. The number 
to be subtracted here is then not two but four. Another very 
important difference compared to the case of pentagonal pyramids 
is that the gap decreases very rapidly on polymerization and 
eventually disappears (5.4 ev in the monomer, 3.0 in the dimer, 
1.5 in the trimer). The polymer shows broadly overlapping bands. 
The difference compared with the previous case lies in the low 
symmetry of the pentagonal pyramid systems compared with those 
of the square pyramid series. This allows the mixing of orbitals 
which tend to be lowered /raised by the fusion process in the first 
case but not in the second. For pyramids with an even greater 
number of basal atoms we can then predict that the edge-fusing 
process leading to the less symmetrical cluster will be generally 
preferred. 

This situation is more complex when the geometrical constraints 
of the edge fusion result in short nonbonded atom-atom contacts. 
For instance this is the case for octahedral edge fusion. Here the 
apical-apical interactions lead to problems similar to those printed 
out in the previous section: somewhat erratic behavior of the SEP 
numbers, small gaps in many cases, and broadly overlapping bands 
in the polymer. A simple formula for the SEP is clearly inap­
propriate. Again the actual number of SEP can be altered by 
a number of factors. The nature of the ligands around the shared 
atoms (normal and bridging) and local distortions such as those 
found in transition-metal oxides with edge-fused octahedral 
chains42 are both important. In conclusion, our study suggests 
that there are quite strong geometrical and symmetry factors 
limiting the electronic stability of edge-fused main-group systems 
and especially extended arrays. It is quite remarkable that the 
simple rules do not apply to the only characterized system of this 
type. 

Face-Sharing Deltahedra. Face-sharing units are found in some 
of the gallium phases examined by Belin and co-workers. 8 shows 
the structure of two face-sharing icosahedra found in Rbo,6-
Na6i25Ga20i02.

13 The sites 11 and 29 are not completely occupied 
(81% and 51%, respectively) so that nido, arachno, and in principle 
other even more defective deltahedra are present. Similar units 
are found in Li3Na5Ga196

43 and K3Li9Ga2883.
44 In K4NanGa4957 

a triply-fused icosahedron is found.14 

The simplest case of face-sharing arises when one of the del­
tahedra is a tetrahedron. This really corresponds to the capping 
of a triangular face of the larger deltahedron by a single atom. 
The electron-counting rule for capped deltahedra is a very simple 
one: n vertices including the cap and «skeletal pairs of electrons. 
The rule works well in practice and may be readily understood 
since the three outward pointing orbitals of the capped face find 
exact orbital matches with the frontier orbitals of the capping 
fragment, and the skeletal electron count for the new polyhedron 
is the same as for the old. The state of affairs becomes more 
complex for the face-sharing of other deltahedra. We will not 
be exhaustive in our discussion but will study systems which are 
chemically realistic. 

In Figure 7 we report the energy levels for a series of face-shared 
octahedral systems. Although these clusters have not yet been 
prepared with group 13 elements, many of them as well as the 
infinite chain are known as ternary molybdenum chalcogenides.45 

They present very interesting physical properties. As can be seen 
from Figure 7, all of them have quite important energy gaps. 
There is also a band gap in the polymer. The number of SEP 
appropriate for these systems is 10 for the dimer, 13 for the trimer, 
etc. Clearly, the number of SEP can be generated by substrating 

(42) Mc Carley, R. E. In Inorganic Chemistry: Towards the 21st Century; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1982, 
pp 273-90. 

(43) Charbonnel, M.; Belin, C. Nouv. J. Chim. 1984, 8, 595. 
(44) Belin, C. J. Solid Slate Chem. 1983, 50, 225. 
(45) Chevrel, R.; Gougeon, P.; Potel, M.; Sergent, M. /. Solid State Chem. 

1985, 57, 25. 
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Figure 7. Energy levels for several face-sharing octahedral systems. 
Thick and thin lines in the band structure represent doubly degenerate 
and nondegenerate bands, respectively. 

4 from the sum of those of the parent polyhedra before fusion. 
The origin of this behavior can be understood by considering 

a fused system as a series of "inner" planar (MH)3 triangles capped 
at the top and bottom by (MH)3 triangles somewhat pyrami-
dalized. This is illustrated in 21 for the dimer. The skeletal 
bonding of each triangle is characterized by three a and one it 
(•JT|) orbitals. The other two w orbitals (ir2,3) remain at higher 
energies. When assembling the dimer from the three sets of 
orbitals, the mixing between <r- and ir-type orbitals is very 
strong—this is how multicentered electron-deficient bonding 
appears—so that the interaction diagram looks quite complex. For 
electron counting however the procedure is very simple. The 
in-phase combination of "capping" TT, orbitals strongly interacts 
with the inner Ir1 and is ejected to the antibonding region. The 
second combination cannot interact with the inner 7T1 but interacts 
quite strongly with <r ones of the inner triangle (22 and 23) and 
is also ejected (24). In short, only one combination of Tr1 orbitals 
remains occupied. The -wxi orbitals are kept high in energy because 
in all of their combinations, antibonding interactions between the 
ir orbitals of one triangle and the a ones of the nearest triangle 
are allowed. We insist that the T-O mixing is strong, but the 
essential result for electron counting purposes is kept in the 
schematic diagram of 24. The procedure can be easily generalized 
to any system of this series (or even to the octahedron itself): in 
all cases there are enough nearest triangle ir—x and ir-a inter­
actions to leave empty all T-based orbitals except the most bonding 
one and to leave occupied all the c-based ones. Formally, any 
new member of the series can be generated by adding a set of three 
SEP to the parent system as actually found in the calculations. 

How do the results of Figure 7 compare with Teo's scheme? 
From octahedron (6, 8, Ij to face-sharing bioctahedron |9, 14, 2| 
the required total number of pairs predicted changes from 13 
(seven skeletal) for the octahedron (correct) but 17 pairs for the 
fused unit. Our calculations show that 19 pairs is the correct 
Figure. For the fused octahedral trimer our calculations show 
that 25 pairs are needed; Teo's rule gives 21. There is thus an 
error in Teo's scheme of two pairs per fusion when applied to these 
main-group systems. 

Teo's rule seems to work for the face fusion of two icosahedra. 
Our calculations for 8 (using boron atoms) show that 23 is the 
appropriate number of SEP. The new deltahedron has three fewer 
vertices and two fewer faces. The rule for generating the X value 
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Table II. Electron Concentration per Atom for Various Units" 

22 23 

77" 

1CT' 

77". 

'(J' 

24 

25 

for the fused system involves simple addition of the X numbers 
for the individual units. Thus for (21, 28,14) a total of 41 electron 
pairs or 23 skeletal pairs are needed for stability. However, we 
suspect the agreement is fortuitous. It should be noted that during 
the fusion process three short M-M distances between atoms of 
different icosahedra are generated (see 8). These contacts were 
indeed found very short in Rb06Na62SGa2002 where these polyhedra 
were characterized. A detailed analysis of the electronic structure 
of this system shows these contacts to have a strong influence on 
the final SEP number. Indeed this is not the only complicating 
feature of these systems. Partial occupancy of several sites in the 
observed structures makes the electron counting somewhat more 
complex. The structures and electronic requirements of some of 
these complex large defective deltahedra will be described else­
where. 

Another interesting system is the tricapped triangular prism 
(TTP), 25. It is an isomer of the face-sharing octahedron. 
Successive face sharing of the prismatic bases generates isomers 
of the face-shared octahedral systems. Exactly the same number 
of SEP are needed for the TTP and face-shared octahedra B9H9. 
The gap is, however, 1.2 eV smaller in the former. Fusion of the 
TTP results in very short distances between capping atoms which 
lead to no clear energy gaps for the members of this series. The 
polymer shows broadly overlapping bands, and we did not find 
a simple distortion leading to a band gap. Face sharing of oc­
tahedra should be a more likely alternative for all these systems. 

electron 
concentration 

in the fragment 
per atom, (Nf) 

3.00 

3.05 
3.13 

3.15 
3.17 

3.18 
3.20 
3.22 

3.25 
3.26 
3.29 

3.31 
3.33 
3.36 
3.39 
3.40 
3.42 

3.44 
3.46 
3.50 

3.53 

3.57 
3.60 
3.64 

3.66 
3.80 
3,90 

4.00 
4.20 
4.25 

structural unit 
face, vertex, and edge sharing octahedra 
face-sharing octahedral polymer 
vertex-linked closo icosahedra with 

two-center two-electron and 
three-center two-electron bonds 

face-sharing closo icosahedral dimer 
face-sharing octahedral tetramer 
closo 15-vertex A* 
face-sharing nido icosahedral dimer 
face-sharing octahedral trimer 
vertex-linked closo icosahedra 
vertex-linked closo 11 vertex A 
vertex-linked closo 10 vertex A 
face-sharing closo octahedra dimer 
vertex-linked closo 9 vertex A 
vertex-linked closo 8 vertex A 
face-sharing arachno 12 vertex dimer 
vertex-linked nido 15 vertex A 
vertex-linked closo 7 vertex A 
vertex-linked cis arachno 15 vertex A 
vertex-linked closo octahedra 
vertex-linked nido 12 vertex A 
face-sharing hypho 12 vertex dimer 
vertex-linked nido 11 vertex A 
vertex-linked closo 12 vertex A with three 

lone pairs 
vertex-linked nido 10 vertex A 
vertex-linked trans arachno 15 vertex A 
edge-sharing nido 7 vertex polymer 
vertex-linked cis hypho 15 vertex A 
vertex-linked nido 9 vertex 
face-sharing superhhypho 12 vertex 

dimer 
vertex-linked nido 8 vertex A 
vertex-linked arachno 12 vertex A 
vertex-linked nido 12 vertex A with three 

lone pairs 
vertex-linked nido 7 vertex A 
vertex-linked nido octahedron 
vertex-linked arachno 12 vertex A with 

three lone pairs 
vertex-linked arachno 8 vertex A 
vertex-linked arachno 7 vertex A 
vertex-linked arachno octahedra 

example 
fee Al 
none 
elemental 

boron 

Li3Na5Ga196 

none 
BeB3 

Li3NasGa|,6 

none 
many 
K3Ga13 

Li3B14 

none 
none 
KGa3 
Li3Na5GaI96 

SiB6 
none 
SiB6 

CaB6 

many 
K3Li9Ga28,83 
none 
Na7Ga13 

none 
SiB6 

MgB4 

SiB6 
none 
none 

none 
none 
none 

none 
none 
none 

none 
none 
none 

"This tabulation is by no means exhaustive. 'The symbol A is used for 
the word deltahedron. 

The face-sharing octahedral polymer, while probably not a 
candidate for a new form of boron, as we describe later, could 
be stable for a material of stoichiometry (BH)n. While boron 
polymers of this type are presently uncharacterized, we recall the 
yellow solid often left behind in vacuum lines through which 
boranes have passed. 

The Structure of Electron-Deficient Materials. At this stage 
we may draw together many of the ideas we have presented earlier 
concerning these structures. What are the factors which determine 
the structures of species with between three and four electrons 
per framework atom? We know that the detailed reasoning will 
be complex, but electron count seems to be an important factor 
as we now show. 

First we point out the relative energetic preferences for three-
and six-membered rings in structures as a function of electron 
count. As we have earlier illustrated by using the method of 
moments,46 between three and four electrons per atom, the 
preference for three-membered rings (well established at three 
electrons) is replaced by that for six-membered rings (well es­
tablished at four electrons). Table II shows the electron con­
centration (TVf) for various building blocks of these structures. 
Interestingly we note that at N1 = 3.5 electrons per atom there 
appears to be a sharp cutoff concerning the observed stability of 
these units. No deltahedra (complete, fragmented, or fused) with 

(46) Burdett, J. K.; Lee, S. /. Am. Chem. Soc. 1985, /07, 3063. 
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electron concentrations greater than Nf = 3.5 are observed. Since 
framework atoms are usual in these structures, the cutoff should 
be near but slightly greater than 3.5 when considering NF. Thus, 
for example, the structure of Mg2Ga5 which has a gallium electron 
count from its formula of Ap = 3.8 electrons/atom is not found 
as the three-dimensional vertex-sharing nido octahedral structure 
(14) described earlier but as an opened up structure containing 
six-membered rings47 (26). The Mg atoms are not shown in 26 
for simplicity. At this point we recall the graphite-like structures 
found for several of these systems with 7VF = 4.0. Thus MgB2, 
CaGa2, and LiBC have either the AlB2 structure or a derivative 
which contains fused planar six-membered rings.48 CaIn2 may 
be regarded as an intercalated hexagonal diamond structure.48 

Here the indium net contains fused, puckered six-membered rings. 
For AV = 4.0 the traditional Zintl ideas are strong ones. 

BaAI4 noted earlier with A'F = 3.5 electrons/atom lies at the 
boundary of three ring/six ring structures. It is, however, a 
structure which contains opened up nido octahedra which are 
linked to give six-membered ring structures. Since it does lie close 
to this boundary of 3.5 electrons/atom, it may be possible to make 
another form of BaAl4 or by replacement of some of the Ba by 
Li move the electron count below this figure and stabilize a solid 
containing clusters. 

Table II shows how the electron count per atom varies with 
the structural unit. Smaller electron counts are obtained by going 
to larger more complete deltahedra which share a large number 
of polyhedral elements. Larger deltahedra of course generally 
mean a less close-packed structure which may be energetically 
undesirable, but the increasing degree of deltahedral fusion leading 
to lower electron counts is easily seen in practice. As Zheng and 
Hoffmann40 have pointed out the structure of fee aluminum metal 
(with three electrons per atom) contains heavily polymerized 
octahedra, which, depending upon the vantage point, share vertices, 
edges, faces, or all three. An electron count of N{ - 3 elec­
trons/atom is also found (Table II) for the face-sharing octahedral 
chain which is vertex linked to its neighbors. It is, however, 
difficult to imagine in geometrical terms how an infinite three-
dimensional structure may be built up by using this one-dimen­
sional building block. There appears then to be nothing wrong 
with its electronic stability, but geometrical factors, associated 
with the interchain contacts, may prevent its realization. (As we 
have commented above, as a BH polymer it could well be stable.) 

The nido icosahedron becomes a more prevalent building block 
as the average atomic concentration A'F increases. Up to an 
average electron count of about Ap = 3.28 electrons/atom all of 
the icosahedra which are found are of the closo variety, such as 
those found in Li2Ga7 for example. At A7P = 3.34 electrons/atom 
in Rbo.6Na675Ga20.02 nido icosahedra make their appearance. At 
the same time we find icosahedra which are less than 12-coordinate 
to their neighbors such that there are lone pairs of electrons at 
outward pointing sites. We note that AV = 4.0 if 10 out of the 
12 vertices are not linked to their surroundings. The critical value 
of Ar

f = 3.5 occurs if four of the vertices have lone pairs. This 
number is not reached in any of the deltahedra we have examined. 
Both of these features are ways to increase the electron count per 
atom for deltahedral stability. However, what is puzzling is the 
role of condensed deltahedra. These correspond to low electron 
counts (A'f) per atom but are only found in practice as the electron 
concentration increases above about A'F ~ 3.33 e/atom (in 
Rb06Na625Ga2002, for example, with an average electron con­
centration of A'F = 3.34 e/atom). These deltahedra are found 
in structures with several isolated atoms (requiring an electron 
count A'f = 4.0), the proportion depending upon the value OfA7F 
itself. It appears that such condensed deltahedra are not capable 

(47) Smith, G. S.; Johnson, Q., Wood, D. H. Acta Crystallogr. 1969, B25, 
554. 

(48) Pearson, W. B. The Crystal Chemistry and Physics of Metals and 
Alloys; Wiley: New York, 1972. 
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Table IH. Parameters Used in the Calculations 

B 

Ga 

orbital 

2s 
2p 
4s 
4p 

H„ eV 

-15.20 
-8.50 

-14.58 
-6.75 

F 
1.30 
1.30 
1.77 
1.55 

"Slater-type orbital exponents. 

of being efficiently packed together via vertex-sharing but need 
the geometrical flexibility of the framework atoms. The structures 
containing them will therefore have higher values of A'F than 
otherwise expected. The geometrical control of these structures 
is thus a strong one. 

The structural-electronic limitations on other structures should 
be somewhat more transparent given the rules and observations 
above. If the dodecahedron is regarded as a distorted cube, we 
could imagine a structure built from dodecahedra and isolated 
(tetrahedral) gallium atoms of stoichiometry (Ga8)Ga2 which 
would be the structural analogue of the fluorite structure. The 
vertex-linked Ga8 dodecahedron has an A'f less than the critical 
cutoff of 3.5 and requires a total of 18 + 8 = 26 electrons for 
stability. The two isolated gallium atoms require four electrons 
each, giving a desired total of 34. Only 30 are present from the 
gallium atoms themselves, and thus four more need to come from 
other atoms which would need to be inserted in the structure. It 
is not clear whether there is space in the arrangement we have 
described. Similar arguments lead to the prediction of an Al2O3 

type of structure for vertex sharing octahedra as (Ga6)2Ga3 with 
a calculated N of 3.464. These solids would have to occur for 
materials of stoichiometry LiGa25 and LiGa216, implying partial 
occupancy of some of the holes in the structure with lithium atoms. 
One interesting structure, which also illustrates the topological 
control of the structural-electronic problem, consists of vertex-
linked dodecahedra alone. These require a value of A'f of 3.25 
(Table II). To have the correct electron count a solid would have 
to correspond to a stoichiometry MGa4. The possible structure 
is simply derived from the vertex-linked cube structure described 
in ref 46 by distortion of the cube to the dodecahedron. Such a 
structure contains holes between the cubes such that if all are filled 
a stoichiometry of M3Ga|6, rather than MGa4, is appropriate. For 
M = M1, N = 3.19 and for M = M", N = 3.38, two figures far 
from those required for stability. Such a system may then adopt 
some other structure. NaGa4 in fact adopts the BaAl4 structure. 

Another interesting observation of this section is the change 
from deltahedral to extended nondeltahedral-type structures oc­
curring at A'F values around 3.5. In that respect the Na22Ga39 

phase (A'F = 3.56, but remember our remarks before concerning 
a possible slightly lower N value) is extremely interesting. As 
we described before, this system contains both icosahedra and the 
spacer 15. Nevertheless, in the three-dimensional framework, 15 
is not located between icosahedra but is linked to other units 15 
to form infinite chains. As we showed earlier 15 is an electron-
deficient (although nondeltahedral) unit. In consequence, 
Na22Ga39 (with A'F near 3.5) contains both deltahedra and an 
extended electron-deficient nondeltahedral network. 

With higher A'F values the deltahedra completely disappear. 
A pertinent example is Mg2Ga5. With N = N( = 3.8 a three-
dimensional framework of vertex-linked nido octahedra (see Table 
II) as shown in 14 could be a likely structure. The observed one47 

is completely different (26) with no deltahedra at all. The 
structural motif of the gallium framework is the Ga10 cage (27). 
A calculation for a Ga10H18 cluster, i.e., the cage 27 saturated 
with hydrogens, shows a gap of 3.6 eV for a total of 10 SEP. Four 
SEP are used to form the two-center two-electron vertical bonds 
of 27. Three SEP are used to form the electron-deficient bonding 
in each of the two units 28. How this number comes about is easy 
to see from the interaction diagram 29. The counting in the solid 
is now easy. Each unit 27 forms 18 two-center two-electron 
external bonds with other units which require 18 electrons per 
27. Since the intracage bonding requires 20 electrons, this leads 
to 38 electrons per 27 unit, i.e., N = Nf = 3.8 for this structure. 
In other words, the electron deficiency has been taken care of in 
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Mg2Ga5 without the creation of any deltahedra. 
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It is then vital to ask at this stage wy it is that in solids with 
AV slightly larger than 3.5 deltahedral structures are not formed, 
but in molecules (such as the nido octahedral B5H9 with Nf = 3.8) 
such geometries are the rule for N( < 4. The answer we believe 
is actually quite simple and has to do with the fundamental 
geometrical difference between molecular systems and extended 
solid-state arrays. The geometrical versatility of the latter is 
enormous, and it is often easy to see how six-membered rings may 
be built into the structure when electronically needed. In the 
molecule the geometrical restrictions are much tighter. In B5H9 

for example, with Nf = 3.8, a six-membered ring of boron atoms 
is an impossibility for the monomeric molecule. 

Boron-Gallium Differences. The most obvious difference be­
tween these two atoms of course, is their size which controls the 
dimensions of any framework generated by linking atoms together 
and also the size of the holes which will be present in such an 
arrangement. The different structures which are found illustrate 
the importance of such geometrical considerations. Within boron 
chemistry different structures are found for M11B4, that of MgB4 

with a small ion and that of YB4 which can accommodate a larger 
ion. Although there are no structures known with the same 
stoichiometry and electropositive element, one observation we can 
make concerning the difference in structures found in borides and 
gallides is the occurrence of B6 octahedra but the prevalence of 
gallium icosahedra and other icosahedral type (nido, arachno, 
fused, etc.) Gan units. 

The origin of these preferences is a difficult problem to tackle 
because of the well-known problems arising in extended Huckel 
calculations when comparing situations with different coordination 
numbers. In these cases the total overlap population is usually 
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the best indicator of structural stability. Indeed we have found 
that the total overlap population per atom is greater for an M6H6 

octahedron in the case of boron (1.018 vs 1.002) but for an M]2H12 

icosahedron in the case of gallium (0.966 vs 0.932). This is in 
excellent agreement with the above observation. An analysis of 
the different contributions to the total overlap population shows 
that the icosahedron is preferred in both cases if only M-M bonded 
contributions are retained. Only when the nonbonded interactions 
are retained does the octahedron become the preferred polyhedron 
for boron. These nonbonded interactions are repulsive and quite 
sizable as commented on earlier. There are two bonds per atom 
in the octahedron but 2.5 in the icosahedron. Although the 
absolute values of these overlap populations are smaller in the 
icosahedron, the greater number of bonds dominates and makes 
the icosahedron preferred in both cases. However, there are only 
0.5 nonbonded interactions per atom in the octahedron but 2.5 
in the case of the icosahedron (we only retain the second nearest 
neighbor ones; there are six additional ones which are very weak 
in both cases). This great number of nonbonded interactions 
destabilizes the icosahedron with respect to the octahedron in the 
case of boron because of the less diffuse nature of the orbitals 
which makes the nonbonded interactions strong. For gallium the 
diffuseness of the orbitals makes their role less important. In other 
words, gallium which has more diffuse orbitals focuses on forming 
strong bonds, but boron, with more contracted orbitals, looks for 
a compromise between good bonding and small repulsive non-
bonded interactions. 

These observations, which qualify the intrinsic stability of 
different deltahedra for boron and gallium, can be important in 
understanding some of the exceptions we have mentioned earlier. 
For instance, KB6, with the vertex-linked CaB6 structure, has an 
iVF value (3.17) which corresponds to the N{ value for vertex-
linked icosahedra. Since a three-dimensional network of this type 
is impossible on geometrical grounds, the system would have to 
adopt a structure with some framework boron atoms in addition 
to deltahedra of some type. This means that in order to get an 
optimal electron concentration there have to be either even higher 
order deltahedra or fused icosahedra. That KB6 adopts the CaB6 

structure even if it cannot take full advantage of the stability of 
the octahedron may well be a consequence of the intrinsic pref­
erence of boron for low order deltahedra. Contrariwise several 
gallium phases have /v*F values very near 3.33 but nevertheless 
do not adopt the very simple CaB6 structure (N = Nf = 3.33) but 
some very complex icosahedral based ones. Both of these ob­
servations are an indication of the importance of the somewhat 
different preferences for boron and gallium. 
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Appendix 

The calculations were of the extended Huckel type for both 
molecules49 and infinite systems.50 The modified Wolfsberg-
Helmholz formula51 was used. The exponents and parameters 
are those of Table III. Experimentally based B-B and Ga-Ga 
distances of 1.72 and 2.70 A were used in both cases. The del­
tahedra were regular except when otherwise stated. Experimental 
distances and angles were used for the Ga]5 (15) and Ga10 (27) 
clusters. 


